Metabolically engineered bacteria for producing hydrogen via fermentation

نویسندگان

  • Gönül Vardar‐Schara
  • Toshinari Maeda
  • Thomas K. Wood
چکیده

Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H(+) + 2e(-) ↔ H(2), yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli

BACKGROUND Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms...

متن کامل

Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production.

Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strai...

متن کامل

Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subs...

متن کامل

Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just l...

متن کامل

Sustainable Production of Omega-3 Eicosapentaenoic Acid by Fermentation of Metabolically Engineered Yarrowia lipolytica

The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. Currently, the major source for EPA is from fish oil, which is subject to challenges in its availability and sustainability due to the concerns of overfishing and contamination in the ocean environment. DuPont has developed a sustai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008